
Resit Exam — Ordinary Differential Equations (WIGDV–07)

Thursday 2 February 2017, 14.00h–17.00h

University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.

2. All answers need to be accompanied with an explanation or a calculation: only
answering “yes”, “no”, or “42” is not sufficient.

3. If p is the number of marks then the exam grade is G = 1 + p/10.

Problem 1 (2 + 8 points)

Consider the following differential equation:

y′ + 6y − y2 = 9.

(a) Show that this equation has precisely one constant solution.

(b) Compute a solution satisfying the initial condition y(0) = 2 and give the largest
interval on which the solution is defined.

Problem 2 (3 + 9 points)

Consider the following differential equation:

(xy2 − y) dx+ x dy = 0.

(a) Show that this equation is not exact.

(b) Use an integrating factor of the form M(x, y) = φ(y) to solve the equation.
Express the solution explicitly as a function of x.

Problem 3 (4 + 10 + 4 points)

Consider the linear equation y′ =



t−1 −1

t−2 2t−1


y, where t > 0.

(a) Verify that y1(t) =

[
t2

−t

]
is a solution.

(b) Compute a second solution of the form

y2(t) = φ(t)y1(t) +

[
0

z(t)

]
.

(c) Compute a fundamental matrix Y (t) with the property Y (1) = I.
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Problem 4 (5 + 7 + 4 + 6 points)

Let C([0, 1]) denote the linear space of continuous functions y : [0, 1] → R. This
space becomes a Banach space under the norm

‖y‖ = sup
x∈[0,1]

|y(x)|e−αx, α > 0.

Consider the integral operator

T : C([0, 1]) → C([0, 1]), (Ty)(x) = 1 +

∫ x

0

log(1 + y(t)2) dt.

Prove the following statements:

(a)
∣∣ log(1 + y2)− log(1 + z2)

∣∣ ≤
∣∣y − z

∣∣ ∀ y, z ∈ R.

(b)
∣∣(Ty)(x)− (Tz)(x)

∣∣ ≤ eαx − 1

α
‖y − z‖ ∀ y, z ∈ C([0, 1]), x ∈ [0, 1].

(c) ‖Ty − Tz‖ ≤
1

α
‖y − z‖ ∀ y, z ∈ C([0, 1]).

(d) The initial value problem

y′ = log(1 + y2), y(0) = 1.

has a unique solution on the interval [0, 1].

Problem 5 (3 + 4 + 3 points)

Let g(x) be a continuous function and consider the following 2nd order equation:

x2u′′ − 4xu′ + 6u = g(x), x > 0.

(a) Find solutions of the homogeneous equation of the form u(x) = xλ.

(b) Verify that a particular solution is given by

up(x) = x3

∫ x

1

g(t)

t4
dt− x2

∫ x

1

g(t)

t3
dt.

(c) Compute a solution that satisfies u(1) = 1 and u′(1) = 4.

Problem 6 (10 + 3 + 5 points)

Consider the following semi-homogeneous boundary value problem:

u′′ + u = f(x), u(0) = 0, u′(π) = 0.

(a) Compute Green’s function Γ(x, ξ).

(b) Sketch the graph of Γ(x, ξ) as a function of x for ξ = 1
2
π.

(c) Use Green’s function to solve the boundary value problem with f(x) = 1.

End of test (90 points)
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Solution of Problem 1 (2 + 8 points)

(a) If y is a constant solution, then y′ = 0 so that 6y − y2 = 9, or equivalently,
(y − 3)2 = 0. Hence, y(x) ≡ 3 is the only constant solution.
(2 points)

(b) Method 1: separation of variables. rewriting the differential equation as

y′ = (y − 3)2

we can solve the equation using separation of variables:

∫
1

(y − 3)2
dy =

∫
dx ⇒ −

1

y − 3
= x+ C ⇒ y = 3−

1

x+ C
.

(4 points)

The initial condition y(0) = 2 gives C = 1.
(2 points)

The maximal interval of existence is (−1,∞).
(2 points)

Method 2: Riccati’s method. The function u = y− 3 satisfies the following
Bernoulli equation:

u′ = u2.

This equation be solved directly using separation of variables. Alternatively, the
new variable z = 1/u satisfies the following linear equation:

z′ = −1.

Solving gives

z = C − x ⇒ u =
1

C − x
⇒ y = 3 +

1

C − x

(4 points)

The initial condition y(0) = 2 gives C = −1.
(2 points)

The maximal interval of existence is (−1,∞).
(2 points)
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Solution of Problem 2 (3 + 9 points)

(a) Define the functions g(x, y) = xy2 − y and h(x, y) = x. Then gy = 2xy − 1 and
hx = 1. Since gy 6= hx it follows that the equation is not exact.
(3 points)

(b) The function φ(y) is an integrating factor if and only if

∂

∂y

[
φ(y)(xy2 − x)

]
−

∂

∂x
[φ(y)x] = 0,

or, equivalently,

φ′(y)(xy2 − y) + (2xy − 1)φ(y)− φ(y) = 0 ⇔ φ′(y) = −
2

y
· φ(y).

Clearly, a solution is given by φ(y) = 1/y2.
(3 points)

After multiplying the differential equation by φ(y) it reads as

(
x−

1

y

)
dx+

x

y2
dy = 0.

Define a potential function by

F (x, y) =

∫ (
x−

1

y

)
dx+ C(y) =

x2

2
−

x

y
+ C(y).

This function should also satisfy

Fy =
x

y2
⇒

x

y2
+ C ′(y) =

x

y2
.

We can choose C(y) = 0.
(3 points)

Finally, the solution is given by

F (x, y) = K ⇔
x2

2
−

x

y
= K ⇔ y =

2x

x2 − 2K
.

(3 points)
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Solution of Problem 3 (4 + 10 + 4 points)

(a) We have

A(t)y1 =




t−1 −1

t−2 2t−1




[
t2

−t

]
=

[
2t
−1

]
= y′

1

which shows that y1 satisfies the homogeneous differential equation.
(4 points)

(b) Compute a second solution of the homogeneous equation of the form

y2(t) = φ(t)y1(t) +

[
0

z(t)

]
.

On the one hand we have that

y′

2 = φ′y1 + φy′

1 +

[
0
z′

]
= φ′y1 + φAy1 +

[
0
z′

]
.

On the other hand we should have that

y′

2 = Ay2 = φAy1 + A

[
0
z

]
.

Therefore we must have [
0
z′

]
= A

[
0
z

]
− φ′y1,

or, equivalently,

0 = −z − t2φ′

z′ = 2t−1z + tφ′

(5 points)

Eliminating φ′ gives
z′ = t−1z ⇒ z = t.

Solving for φ gives
φ′ = −t−1 ⇒ φ = − log t.

Hence, the second solution is given by

y2 = − log t

[
t2

−t

]
+

[
0
t

]
=

[
−t2 log t

t(1 + log t)

]

(5 points)

(c) Since y1 and y2 are linearly independent a fundamental matrix is given by

Ỹ (t) =

[
t2 −t2 log t
−t t(1 + log t)

]
.

Multiplying a fundamental matrix on the right side with an invertible matrix
gives again a fundamental matrix. In particular,

Y (t) := Ỹ (t)Ỹ (1)−1 =

[
t2 −t2 log t
−t t(1 + log t)

] [
1 0

−1 1

]
−1

=

[
t2(1− log t) −t2 log t

t log t t(1 + log t)

]

is a fundamental matrix that satisfies Y (1) = I.
(4 points)
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Solution of Problem 4 (5 + 7 + 4 + 6 points)

(a) If y < z, then by the Mean Value Theorem there exists c ∈ (y, z) such that

log(1 + y2)− log(1 + z2) =
2c

1 + c2
(y − z).

Taking absolute values gives

| log(1 + y2)− log(1 + z2)| =
2|c|

1 + c2
|y − z|.

(3 points)

Note that

0 ≤ (1− |c|)2 = 1− 2|c|+ c2 ⇒ 2|c| ≤ 1 + c2 ⇒
2|c|

1 + c2
≤ 1,

which gives the desired inequality.
(2 points)

Note: the last inequality can also be obtained by computing the maximum and
minimum of the function f(t) = 2t/(1 + t2).

(b) Let y, z ∈ C([0, 1]) and x ∈ [0, 1] be arbitrary. Then

|(Ty)(x)− (Tz)(x)
∣∣ =

∣∣∣∣
∫ x

0

log(1 + y(t)2)− log(1 + z(t)2) dt

∣∣∣∣

≤

∫ x

0

| log(1 + y(t)2)− log(1 + z(t)2)| dt

≤

∫ x

0

|y(t)− z(t)| dt

=

∫ x

0

|y(t)− z(t)|e−αteαt dt

≤ ‖y − z‖

∫ x

0

eαt dt

=
eαx − 1

α
‖y − z‖

(7 points)

(c) By part (b) we get

|(Ty)(x)− (Tz)(x)
∣∣e−αx ≤

1− e−αx

α
‖y − z‖ ≤

1

α
‖y − z‖.

(2 points)

Therefore, we have

‖Ty − Tz‖ = sup
x∈[0,1]

|(Ty)(x)− (Tz)(x)
∣∣e−αx ≤

1

α
‖y − z‖.

(2 points)
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(d) First we recall Banach’s fixed point theorem. Let D be a closed, nonempty
subset in a Banach space B. Let the operator T : D → B map D into itself, i.e.,
T (D) ⊂ D, and assume that T is a contraction: there exists a number 0 < q < 1
such that

‖Tx− Ty‖ ≤ q‖x− y‖, ∀ x, y ∈ D,

Then the fixed point equation Tx = x has precisely one solution x̄ ∈ D.
(3 points)

We take D = B = C([0, 1]) and we let T : B → B be as defined above. Part (b)
shows that T is a contraction for α > 1 (we can take q = 1

α
). Therefore, all the

assumptions of Banach’s fixed point theorem are satisfied. This implies that T
has a unique fixed point. Noting that

Ty = y ⇔ y(x) = 1+

∫ x

0

log(1+y(t)2) dt ⇔ y′ = log(1+y2), y(0) = 1

completes the proof.
(3 points)
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Solution of Problem 5 (3 + 4 + 3 points)

(a) If u(x) = xλ, then we find the characteristic equation

λ2 − 5λ+ 6 = 0 ⇔ (λ− 2)(λ− 3) = 0.

of which the solutions are obviously λ = 2 and λ = 3. Hence, u = x2 and u = x3

are solutions of the homogeneous equation.
(3 points)

(b) Differentiating once gives

u′

p(x) = 3x2

∫ x

1

g(t)

t4
dt− 2x

∫ x

1

g(t)

t3
dt

(2 points)

Differentiating once more gives

u′′

p(x) = 6x

∫ x

1

g(t)

t4
dt− 2

∫ x

1

g(t)

t3
dt+

g(x)

x2

(2 points)

Therefore, it follows that

x2u′′

p − 4xu′

p + 6up = g(x).

(c) The general solution is given by

u(x) = uh(x) + up(x) = c1x
2 + c2x

3 + x3

∫ x

1

g(t)

t4
dt− x2

∫ x

1

g(t)

t3
dt.

The initial conditions give

c1 + c2 = 1, 2c1 + 3c2 = 4,

which implies that c1 = −1 and c2 = 2.
(3 points)
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Solution of Problem 6 (10 + 3 + 5 points)

(a) First we solve the homogeneous differential equation:

u′′ + u = 0 ⇒ u(x) = c1 cos(x) + c2 sin(x).

(2 points)

The solution u1(x) = sin(x) satisfies the left boundary condition u(0) = 0.
(2 points)

The solution u2(x) = cos(x) satisfies the right boundary condition u′(π) = 0.
(2 points)

Their Wronskian determinant is

W = u1u
′

2 − u′

1u2 = −1.

(2 points)

Since p(x) ≡ 1 the Green’s function is given by

Γ(x, ξ) =

{
− sin(ξ) cos(x) if 0 ≤ ξ ≤ x ≤ π,

− sin(x) cos(ξ) if 0 ≤ x ≤ ξ ≤ π.

(2 points)

(b) We have

Γ(x, 1
2
π) =

{
− cos(x) if 1

2
π ≤ x ≤ π,

0 if 0 ≤ x ≤ 1
2
π.

For 0 ≤ x ≤ 1
2
π the we have to draw the graph of the zero function.

(1 point)

For 1
2
π ≤ x ≤ π we have to draw the graph of − cos(x).

(2 points)

(c) In general we have

u(x) =

∫ π

0

Γ(x, ξ)f(ξ)dξ.

(2 points)

In particular, for f(x) = 1 we have

u(x) =

∫ π

0

Γ(x, ξ)f(ξ)dξ

= − cos(x)

∫ x

0

sin(ξ)dξ − sin(x)

∫ π

x

cos(ξ)dξ

= − cos(x)(1− cos(x))− sin(x)(sin(π)− sin(x))

= 1− cos(x)

(3 points)
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